New Antiviral Drugs from Bacterial Natural Products

  • Yeda
  • From Israel
  • Responsive
  • Patents for licensing

Summary of the technology

The increasing incidence of viral infections across the globe is driving the demand for antiviral drugs. Prof. Rotem Sorek and his team identified a new family of bacterial enzymes that produce various nucleotide analogs with antiviral properties (Bernheim, Nature 2021). With further chemical modifications, these molecules were shown to have potent antiviral activity against several human viruses for which no other drug is available. Notably, the active molecules were found to be stable in human plasma, and experiments in animal models showed no adverse effects upon IV/PO administration.

Yeda
Yeda

Background and Unmet Need

The increasing incidence of viral infections across the globe is driving the demand for new antiviral drugs. Although antiviral drugs are currently available for some viral infections, there is still no effective treatments for many viruses.

Many of the approved antiviral drugs target the viruses by inhibiting virus-specific enzymes, such as the vira polymerase, integrase, and protease. Drugs that inhibit the viral DNA polymerase (i.e., acyclovir, tenofovir, valganciclovir, and valacyclovir) or RNA-dependent RNA polymerase (i.e., Remdesivir) are frequently nucleotide/nucleoside analogs that can induce chain termination or hypermutation in the viral nucleic acids.

Nucleotide/nucleoside analogs are crucial components of the antiviral medicinal chemistry arsenal, and new analogs that effectively inhibit viral infections with minimal side effects are constantly sought after.

The Solution

Prof. Rotem Sorek and his team identified a family of bacterial enzymes that produce novel modified nucleotides.
These are naturally produced by bacteria to fend off viruses that infect them. The team demonstrated that chemically modified versions of these molecules have potent antiviral activity, high stability in serum, and no adverse effect in animal models.

Technology Essence

The bacterial enzymes identified by the Sorek team modify normal ribonucleotides into their 3?-deoxy-3?,4?-didehydro (ddh) NTP versions. While one of these modified nucleotides is known to be naturally produced by human cells to curb infections, several molecules identified by Sorek were not described before. Using new, IP-protected synthesis routes, the team produced the molecules as prodrugs, and tested their antiviral efficacy against multiple viruses. They demonstrated antiviral activity against several viruses for which no known drug is available. Furthermore, the molecules were shown to be stable in human and rat plasma. Experiments in vivo revealed no adverse effects upon IV/PO administration to rats.

Applications and Advantages

  • New antiviral drugs, antiviral activity demonstrated in multiple assays.
  • Stable in human and rat plasma
  • No adverse events upon IV/PO administration to rats
  • Organic synthesis of novel non-natural nucleotide analogs and their prodrug versions (IP-protected)
  • Potentially improved potency, bioconversion, and pharmacokinetic properties, with low toxicity

References

Bernheim A, Millman A, Ofir G, et al. s. Nature. 2021;589(7840):120-124. doi:10.1038/s41586-020-2762-2 [1]

Related Keywords

  • Biological Sciences
  • Medicine, Human Health
  • Medical Research
  • Biology / Biotechnology
  • Cellular and Molecular Biology Technology
  • Medical Health related
  • Pharmaceuticals/fine chemicals

About Yeda

Yeda ("Knowledge" in Hebrew) Research and Development Company Ltd. is the commercial arm of the Weizmann Institute of Science (WIS) and is the second company of its kind established in the world.

WIS is one of the world’s leading multidisciplinary basic research institutions in the natural and exact sciences. It is located in Rehovot, Israel, just south of Tel Aviv. It was initially established as the Daniel Sieff Institute in 1934, by Israel and Rebecca Sieff of London in memory of their son Daniel. In 1949, it was renamed for Dr. Chaim Weizmann, the first President of the State of Israel and Founder of the Institute.

Yeda initiates and promotes the transfer to the global marketplace of research findings and innovative technologies developed by WIS scientists. Yeda holds an exclusive agreement with WIS to market and commercialize its intellectual property and generate income to support further research and education.

Since 1959 Yeda has generated the highest income per researcher compared to any other TTO worldwide. Weizmann has generated a number of groundbreaking therapies, such as Copaxone, Rebif, Tookad, Erbitux, Vectibix, Protrazza, Humira, and recently the CAR-T cancer therapy Yescarta.

Yeda performs the following activities:

◣ Identifies and assesses research projects with commercial potential.
◣ Protects the intellectual property of WIS and its scientists.
◣ Licenses WIS' inventions and technologies to industry.
◣ Establishes new Startup companies based in WIS Intellectual Property
◣ Channels funding from industry to research projects.

Our portfolio covers a broad spectrum of the natural sciences, including:

◣ Agriculture and Plant Genetics, including Bio-fuels
◣ Chemistry and Nanotechnology
◣ Environmental Sciences and Solar Energy
◣ Mathematics and Computer Science
◣ Medical Devices
◣ Pharmaceuticals and Diagnostics
◣ Physics and Electro-Optics
◣ Research Tools

Yeda

Never miss an update from Yeda

Create your free account to connect with Yeda and thousands of other innovative organizations and professionals worldwide

Yeda

Send a request for information
to Yeda

About Technology Offers

Technology Offers on Innoget are directly posted
and managed by its members as well as evaluation of requests for information. Innoget is the trusted open innovation and science network aimed at directly connect industry needs with professionals online.

Help

Need help requesting additional information or have questions regarding this Technology Offer?
Contact Innoget support