Never miss an update from Yeda
Create your free account to connect with Yeda and thousands of other innovative organizations and professionals worldwide
Battery and capacitor electrode technologies available in the industry today, are struggling to keep up with rapidly advancing applications that require high power and energy density such as electric vehicles, solar cells and telecommunications systems. One of the leading solutions to this problem are CNT-based films, exhibiting excellent conductivity with potentially moderate costs, yet current methods for their formation are both complicated and expensive or hamper the qualities of the material, causing conductivity reduction. A new technology developed by a group of researchers from the Weizmann Institute of Science is simple and potentially cost-effective, preserves the high electrical qualities of the original CNTs and can be easily used to form large surfaces. This technology involves a simple assembly method of organic nanocrystal combined with carbon nanotubes (ONC)/(CNT) to form self-supporting hybrid films with conductivities as high as 5.78 S/m, and excellent thermal stability (of up to ~300 °C). The characteristics of the films enable their use as porous electrodes, with easily adjustable pore sizes. These films can then be straightforwardly incorporated into existing platforms such as solar cells, batteries and super capacitors, improving their energy and power density capabilities. Successful incorporation of electrodes into perovskite solar cells has already been demonstrated to improve its efficiency and photo-stability and promising preliminary results were recently demonstrated for the utilization of ONC porous electrodes as separators in supercapacitors.
The Need
The growing need to provide electrodes that can withstand high electric power density has propelled the industry to seek out better electrode platforms. Key target applications include super-capacitors, batteries and photovoltaic systems. Many of the existing electrode technologies used in photovoltaics (specifically perovskite-based solar cells) and super-capacitors are forbiddingly expensive, exhibit low thermal and mechanical stability and are difficult to process. CNTs are gaining much attention for these purposes due to their excellent conductivity and potentially moderate costs, yet their integration into such systems is prevented by the difficulty to efficiently produce largescale CNT films with desired characteristics.
Proposed hybrid CNT dispersion and self-assembly platform enables large-scale production of CNT films exhibiting high mechanical and thermal stability, while preserving their high conductivity. Films prepared with this method were recently efficiently incorporated into perovskite solar cells, replacing gold electrodes while dramatically increasing the cells photo-stability. This CNT hybrid film production platform is also expected to improve the electrical and stability properties of batteries and super-capacitors.
The Solution
A team of researchers led by Prof. Rybtchinski used readily available, hydrophobic perylene diimide (PDIs) derivatives as the base component for the production of organic nanocrystals (ONCs). The PDIs were mixed and bath-sonicated with either single-wall or multi-wall CNTs, in an aqueous medium, to produce film dispersions with different CNT/ONC ratios. Similarly, CNT/PDI films can be obtained from organic media dispersions. The researchers were able to achieve homogenous dispersion of the CNTs in the ONCs, with CNT content ranging from ~3-8 %wt to >60 %wt. Characterization of the nanocomposite showed excellent thermal stability up to 300 °C, along with high electrical conductance of 5.8 S/m even with a CNT content as low as 3% concentration. This dispersion and fabrication technology was used for the production of self-supporting films that can be incorporated into different systems as was demonstrated for multi-layered perovskite solar cells to which a CNT/ONC film was
integrated, serving as an electrode.
Figure 1. Cross-sectional SEM image of solar cells with a) standard gold electrode and b) hybrid membrane ONC/CNT electrode. Scale bars are 500 nm. c) Schematic presentation of CsPbBr3 perovskite solar cell architecture.
Applications and Advantages
Advantages
Excellent characteristics for porous electrode applications:
Tunable CNT content
Applications
Porous electrodes in:
Perovskite solar cells
Super-capacitors
Improved batteries (e.g., for electric vehicles).
Other potential applications:
A CNT dispersion method
Chemical sensors
Water treatment and separation films
Conductive colorant and optoelectronics systems
Polymer/CNT composites
Electromagnetic shielding and microwave absorption.
Development Status
The group of Prof. Rybtchinski has demonstrated a method for easy fabrication of hybrid films combining ONCs and CNTs (Published in: Adv. Mater. 2018 30 (2) 1705027 [1]). This method was successfully applied for the production of self-supporting conductive films that were incorporated into perovskite solar cells, which were tested in a 6-week field trial showing a dramatic improvement in solar cell photo-stability. Promising preliminary results utilizing ONC porous electrodes as separators in super-capacitors were recently demonstrated. Additional experiments are to be conducted to incorporate the electrodes into batteries and further investigate their integration into super-capacitor.
Market Opportunity
Energy and power requirements in many emerging technologies have exceeded the capabilities of traditional batteries and capacitors, driving the market to find improved solutions for the batteries’ limited power density and for the limited energy density of super capacitors. Technologies enabling incorporation of improved porous electrodes with high power as well as high energy density, are highly desirable for rapidly developing markets, such as the super-capacitor industry. According to recent reports, the value of the super-capacitor market is expected to reach USD 2.3 billion by 2023, growing at a CAGR of 20%, through 2018-2023. This is largely attributed to the growing electric vehicle industry and other applications that require high power supply to be found, inter alia, in the telecommunication industry. Similarly, improved electrodes are key to the development of novel solar cells types, such as perovskite solar cells. Limitations relating to stability, cost and power generation capabilities are currently preventing the ability to exploit their full potential and limiting the extensive use of novel solar cells. A technology that dramatically promotes the solar cell’s stability and efficiency can potentially be of a very high value to this market.
Yeda ("Knowledge" in Hebrew) Research and Development Company Ltd. is the commercial arm of the Weizmann Institute of Science (WIS) and is the second company of its kind established in the world.
WIS is one of the world’s leading multidisciplinary basic research institutions in the natural and exact sciences. It is located in Rehovot, Israel, just south of Tel Aviv. It was initially established as the Daniel Sieff Institute in 1934, by Israel and Rebecca Sieff of London in memory of their son Daniel. In 1949, it was renamed for Dr. Chaim Weizmann, the first President of the State of Israel and Founder of the Institute.
Yeda initiates and promotes the transfer to the global marketplace of research findings and innovative technologies developed by WIS scientists. Yeda holds an exclusive agreement with WIS to market and commercialize its intellectual property and generate income to support further research and education.
Since 1959 Yeda has generated the highest income per researcher compared to any other TTO worldwide. Weizmann has generated a number of groundbreaking therapies, such as Copaxone, Rebif, Tookad, Erbitux, Vectibix, Protrazza, Humira, and recently the CAR-T cancer therapy Yescarta.
Yeda performs the following activities:
◣ Identifies and assesses research projects with commercial potential.
◣ Protects the intellectual property of WIS and its scientists.
◣ Licenses WIS' inventions and technologies to industry.
◣ Establishes new Startup companies based in WIS Intellectual Property
◣ Channels funding from industry to research projects.
Our portfolio covers a broad spectrum of the natural sciences, including:
◣ Agriculture and Plant Genetics, including Bio-fuels
◣ Chemistry and Nanotechnology
◣ Environmental Sciences and Solar Energy
◣ Mathematics and Computer Science
◣ Medical Devices
◣ Pharmaceuticals and Diagnostics
◣ Physics and Electro-Optics
◣ Research Tools
Create your free account to connect with Yeda and thousands of other innovative organizations and professionals worldwide
Send a request for information
to Yeda
Technology Offers on Innoget are directly posted
and managed by its members as well as evaluation of requests for information. Innoget is the trusted open innovation and science network aimed at directly connect industry needs with professionals online.
Need help requesting additional information or have questions regarding this Technology Offer?
Contact Innoget support