Never miss an update from Universidad de Alicante
Create your free account to connect with Universidad de Alicante and thousands of other innovative organizations and professionals worldwide
The Applied Petrology Group of the University of Alicante has developed an automatic device and a method to determine gas diffusion coefficients of single gases from a gas mixture under atmospheric conditions. The device works in a wide range of relative humidity and temperature and can be employed to test any permeable or porous material. The procedure allows to calculate the gas diffusion coefficients for samples with different size and nature (soils, rocks, concretes, synthetic materials, etc.). It is a non-destructive test that can be used to calculate the gas diffusion coefficients of more than one gas at the same time. It is looking for companies that are interested in this technology for its commercial exploitation.
Main advantages of its use
The main advantages and the novelty of the presented device are:
Specifications
Diffusion is the movement of a molecule in a gas mixture as consequence of an existing concentration gradient. This mechanism constitutes the principal gas transport mechanism through porous materials.
Diffusion is quantified through the gas diffusion coefficient of the gas. In porous materials, this coefficient depends on the material type, its pore structure and its water content.
The estimation of the diffusion coefficient has a great interest from a scientific and technical point of view, although it has been mainly carried out by indirect methods.
Although there are some different methods for measuring gas diffusion coefficients (soil columns in which a concentration gradient is forced, employing a gaseous tracer; or plastic membranes via forced diffusion chambers), most of these methods run under constant conditions, which cannot be modified. Thus, for example, temperature conditions or the volumetric water content in the samples cannot be varied during the tests. Therefore, the influence of these parameters in the gas diffusion coefficient cannot be established, although they are a paramount importance.
TECHNICAL DESCRIPTION
This invention solves the above mentioned problems. It allows to determinate the gas diffusion coefficients of, at least, one gas present in a gas mixture (either, homogeneous or heterogeneous), when the gas moves through a porous or permeable material. The material can be tested under different conditions such as compacting degree (soils, rocks, concretes, synthetics materials, etc.), humidity degrees and a wide range of temperatures. This device reproduces, in a laboratory scale, real conditions.
The sample is placed in a sealed cell between two vertical differentiated chambers. An automated injection of the gas under study is performed in one of the cells, keeping constant the gas concentration in this chamber during the whole procedure. A probe measuring gas concentration is installed in each chamber, as well as temperature and relative humidity probes. The diffusion process is well guaranteed due to the concentration gradient between the two chambers.
To determine the gas diffusion coefficient, the laboratory device works following the gradient method. This method assumes that gas flux across the soil achieves a steady-state even though the gas concentrations in the chambers change with time. The device has an automatic control system to guarantee the experimental conditions set up by the user and a valves system, which allows the entry and gas outlet.
The device works at atmospheric pressure for the whole experiment. The different steps are:
Applications
This invention is appropriate to the field of Material Science. The device has been designed in order to determine gas diffusion coefficients in a wide range of environmental conditions and for multiple samples with different size and composition.
For instance:
The device would result useful in:
Intellectual property status
The present invention is protected through patent application:
Current development status
The technology has been developed at laboratory scale, and the method has been proved to be reliable and reproducible enough.
A physical prototype is available for demonstration (Figure 1).
Desired business relationship
It is looking for companies interested in this technology for its technological exploitation through:
Ahead of the current Coronavirus outbreak, Innoget is fully committed to contributing to mobilizing scientific and expert communities to find a real solution to the Covid-19 pandemic. Therefore, we're supporting worldwide calls and programs that could help in any aspects of the coronavirus crisis.
Is your organization promoting or looking for innovation or research initiatives to mitigate the Covid-19 outbreak? Email us at covid19@innoget.com to list them.
Channeled through Innoget's online open innovation network, initiatives in the health, virology, medicine, or novel technologies applied to human health, among others, are listed and disseminated to Innoget members -ranging from hospitals, research institutes, scientists, businesses, and public administrations- and innovation partners worldwide.
Create your free account to connect with Universidad de Alicante and thousands of other innovative organizations and professionals worldwide
Send a request for information
to Universidad de Alicante
Technology Offers on Innoget are directly posted
and managed by its members as well as evaluation of requests for information. Innoget is the trusted open innovation and science network aimed at directly connect industry needs with professionals online.
Need help requesting additional information or have questions regarding this Technology Offer?
Contact Innoget support