Restoring Pre-Industrial CO2 Levels While Achieving Sustainable Development Goals
Mark Capron is the lead author. Dr. Jones is a co-author.
Abstract
Unless humanity achieves United Nations Sustainable Development Goals (SDGs) by 2030 and restores the relatively stable climate of pre-industrial CO2 levels (as early as 2140), species extinctions, starvation, drought/floods, and violence will exacerbate mass migrations. This paper presents conceptual designs and techno-economic analyses to calculate sustainable limits for growing high-protein seafood and macroalgae-for-biofuel. We review the availability of wet solid waste and outline the mass balance of carbon and plant nutrients passing through a hydrothermal liquefaction process. The paper reviews the availability of dry solid waste and dry biomass for bioenergy with CO2 capture and storage (BECCS) while generating Allam Cycle electricity. Sufficient wet-waste biomass supports quickly building hydrothermal liquefaction facilities. Macroalgae-for-biofuel technology can be developed and straightforwardly implemented on SDG-achieving high protein seafood infrastructure. The analyses indicate a potential for (1) 0.5 billion tonnes/yr of seafood; (2) 20 million barrels/day of biofuel from solid waste; (3) more biocrude oil from macroalgae than current fossil oil; and (4) sequestration of 28 to 38 billion tonnes/yr of bio-CO2. Carbon dioxide removal (CDR) costs are between 25–33% of those for BECCS with pre-2019 technology or the projected cost of air-capture CDR.